在Linux内核中,并非总使用基于页的方法来承担缓存的任务。内核的早期版本只包含了块缓存,来加速文件操作和提高系统性能。这是来自于其他具有相同结构的类UNIX操作系统的遗产。来自于底层块设备的块缓存在内存的缓冲区中,可以加速读写操作。
与内存页相比,块不仅比较小(大多数情况下),而且长度可变的,依赖于使用的块设备(或文件系统)。随着日渐倾向于使用基于页操作实现的通用文件存取方法,块缓存作为中枢系统缓存的重要性已经逐渐失去。主要的缓存任务现在由页缓存承担。另外,基于块的I/O的标准数据结构,现在已经不再是缓冲区,而是struct bio结构。
缓冲区用作小型的数据传输,一般设计的数据量是与块长度可比拟的。文件系统在处理元数据时,通常会使用此类方法。而裸数据的传输则按页进行,而缓冲区的实现也基于也缓存。
块缓存在结构上由两个部分组成:
1)缓冲头(buffer head)包含了与缓冲区状态相关的所有管理数据,包括快号、块长度、访问计数器等。这些数据不是直接存储在缓冲头之后,而是存储在物理内存的一个独立区域中,由缓冲头结构中的一个对应的指针表示。
2)有用数据保存在专门分配的页中,这些页也可能同时存在于页缓存中。这进一步细分了页缓存,在我们的例子中,页划分为4个长度相同的部分,每一部分由其自身的缓冲头描述。缓冲头存储的内存区域与有用数据存储的区域是有关的。
这使得页面可以细分为更小的部分,各顾各部分之间完全连续的(因为缓冲区数据和缓冲头数据是分离的)。因为一个缓冲区由至少512字节组成,每页最多可包括MAX_BUF_PER_PAGE个缓冲区。该常数定义为页面长度的函数。
如果修改了某个缓冲区,则会立即印象到页面的内容(反之也是),因而两个缓存不需要显示同步,毕竟二者的数据是共享的。
当然,有些应用程序在访问块设备时,使用的是块而不是页面,读取文件系统的操作几块,就是一个例子。一个独立的块缓存用于加速此类访问。该块缓存的运作独立于页面缓存,而不是在其上建立的。为此,缓冲头数据结构(对于块缓存和页面缓存是相同的)群聚在一个长度恒定的数组中,各个数组项按LUR方式管理。在一个三个数组项用过之后,将其置于索引位置0,其他数组项相应下移。这意味这最常使用的数组项位于数组的开头,而不常用的数组项将被后退,如果很长时间不使用,则会“掉出”数组。
因为数组的长度,或者说LUR列表中的项数,是一个固定值,在内核运行期间不改变,内核无需运行独立的线程来将缓存长度修正为合理值。相反,内核只需要在一项“掉出”数组时,将相关的缓冲区从缓存删除,以释放内存,用于其他目地。
块缓存实现
块患处不仅仅用作页面缓存的附加功能,对以块而不是页面进行处理的对象来说,块缓存是一个独立的缓存。
数据结构
块缓冲区头
struct buffer_head {
unsigned long b_state; /* buffer state bitmap (see above) */
struct buffer_head *b_this_page;/* circular list of page's buffers */
struct page *b_page;/* the page this bh is mapped to */
sector_t b_blocknr; /* start block number */
size_t b_size; /* size of mapping */
char *b_data; /* pointer to data within the page */
struct block_device *b_bdev;
bh_end_io_t *b_end_io; /* I/O completion */
void *b_private;/* reserved for b_end_io */
struct list_head b_assoc_buffers; /* associated with another mapping */
struct address_space *b_assoc_map; /* mapping this buffer is
associated with */
atomic_t b_count; /* users using this buffer_head */
};
操作
内核必须提供一组操作,使得其余代码能够轻松有效地利用缓冲区的功能。切记:这些机制对内存中实际缓存的数据没有贡献。
在使用缓冲区之前,内核首先必须创建一个buffer_head结构实例,而其余的函数则对该结构进行操作。因为创建新缓冲头是一个频繁重现的任务,他应该尽快执行。这是一种很经典的情形,可使用slab缓存解决。
切记:内核源代码确实提供了一些函数,可用作前端,来创建和销毁缓冲头。alloc_buffer_head生成一个新的缓冲头,而free_buffer_head销毁一个显存的缓冲头。
/*分配buffer_head*/
struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
{
/*从slab中分配空间*/
struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
if (ret) {
/*初始化*/
INIT_LIST_HEAD(&ret->b_assoc_buffers);
get_cpu_var(bh_accounting).nr++;
recalc_bh_state();
put_cpu_var(bh_accounting);
}
return ret;
}
页缓存和块缓存的交互
一页划分为几个数据单元,但缓冲头保存在独立的内存区中,与实际数据无关。与缓冲区的交互没有改变的页的内容,缓冲区只不过为页的数据提供了一个新的视图。
为支持页与缓冲区的交互,需要使用struct page的private成员。其类型为unsigned long,可用作指向虚拟地址空间中任何位置的指针。
Private成员还可以用作其他用途,根据页的具体用途,可能与缓冲头完全无关。但其主要的用途是关联缓冲区和页。这样的话,private指向将页划分为更小单位的第一个缓冲头。各个缓冲头通过b_this_page链接为一个环形链表。在该链表中每个缓冲头的b_this_page成员指向下一个缓冲头,而最后一个缓冲头的b_this_page成员指向第一个缓冲头。这使得内核从page结构开始,可以轻易地扫描与页关联的所有buffer_head实例。
内核提供cteate_empty_buffers函数关联page和buffer_head结构之间的关联:
/*
* We attach and possibly dirty the buffers atomically wrt
* __set_page_dirty_buffers() via private_lock. try_to_free_buffers
* is already excluded via the page lock.
*/
void create_empty_buffers(struct page *page,
unsigned long blocksize, unsigned long b_state)
{
struct buffer_head *bh, *head, *tail;
head = alloc_page_buffers(page, blocksize, 1);
bh = head;
/*遍历所有缓冲头,设置其状态,并建立一个环形链表*/
do {
bh->b_state |= b_state;
tail = bh;
bh = bh->b_this_page;
} while (bh);
tail->b_this_page = head;
spin_lock(&page->mapping->private_lock);
/*缓冲区的状态依赖于内存页面中数据的状态*/
if (PageUptodate(page) || PageDirty(page)) {
bh = head;
do {/*设置相关标志*/
if (PageDirty(page))
set_buffer_dirty(bh);
if (PageUptodate(page))
set_buffer_uptodate(bh);
bh = bh->b_this_page;
} while (bh != head);
}
/*将缓冲区关联到页面*/
attach_page_buffers(page, head);
spin_unlock(&page->mapping->private_lock);
}
static inline void attach_page_buffers(struct page *page,
struct buffer_head *head)
{
page_cache_get(page);/*递增引用计数*/
/*设置PG_private标志,通知内核其他部分,page实例的private成员正在使用中*/
SetPagePrivate(page);
/*将页的private成员设置为一个指向环形链表中第一个缓冲头的指针*/
set_page_private(page, (unsigned long)head);
}
交互
如果对内核的其他部分无益,那么在页和缓冲区之间建立关联就没起作用。一些与块设备之间的传输操作,传输单位的长度依赖于底层设备的块长度,而内核的许多部分更喜欢按页的粒度来执行I/O操作,因为这使得其他事情更容易处理,特别是内存管理方面。在这种场景下,缓冲头区充当了双方的中介。
从缓冲区中读取整页
首先考察内核在从块设备读取整页时采用的方法,以block_read_full_page为例。我们讨论缓冲区实现所关注的部分。
/*
* Generic "read page" function for block devices that have the normal
* get_block functionality. This is most of the block device filesystems.
* Reads the page asynchronously --- the unlock_buffer() and
* set/clear_buffer_uptodate() functions propagate buffer state into the
* page struct once IO has completed.
*/
int block_read_full_page(struct page *page, get_block_t *get_block)
{
struct inode *inode = page->mapping->host;
sector_t iblock, lblock;
struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
unsigned int blocksize;
int nr, i;
int fully_mapped = 1;
BUG_ON(!PageLocked(page));
blocksize = 1 << inode->i_blkbits;
/*检查页是否有相关联的缓冲区,如果没有,则创建他*/
if (!page_has_buffers(page))
create_empty_buffers(page, blocksize, 0);
/*获得这些缓冲区,无论是新建的还是已经存在的
只是将page的private成员转换为buffer_head指针,因为按照
惯例,private指向与page关联的第一个缓冲头*/
head = page_buffers(page);
iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
bh = head;
nr = 0;
i = 0;
/*内核遍历与页面关联的所有缓冲区*/
do {
/*如果缓冲区内容是最新的,内核继续处理下一个
缓冲区。在这种情况下,页面缓冲区中的数据与块
设备匹配,无需额外的读操作*/
if (buffer_uptodate(bh))
continue;
/*如果没有映射*/
if (!buffer_mapped(bh)) {
int err = 0;
fully_mapped = 0;
if (iblock < lblock) {
WARN_ON(bh->b_size != blocksize);
/*确定块在块设备上的位置*/
err = get_block(inode, iblock, bh, 0);
if (err)
SetPageError(page);
}
if (!buffer_mapped(bh)) {
zero_user(page, i * blocksize, blocksize);
if (!err)
set_buffer_uptodate(bh);
continue;
}
/*
* get_block() might have updated the buffer
* synchronously
*/
if (buffer_uptodate(bh))
continue;
}
/*如果缓冲区已经建立了与块的映射,但是其内容不是最新
的则将缓冲区放置到一个临时的数组中*/
arr[nr++] = bh;
} while (i++, iblock++, (bh = bh->b_this_page) != head);
if (fully_mapped)
SetPageMappedToDisk(page);
if (!nr) {
/*
* All buffers are uptodate - we can set the page uptodate
* as well. But not if get_block() returned an error.
*/
if (!PageError(page))
SetPageUptodate(page);
unlock_page(page);
return 0;
}
/* Stage two: lock the buffers */
for (i = 0; i < nr; i++) {
bh = arr[i];
lock_buffer(bh);
/*将b_end_io设置为end_buffer_async_read,该函数将在数据传输结构时
调用*/
mark_buffer_async_read(bh);
}
/*
* Stage 3: start the IO. Check for uptodateness
* inside the buffer lock in case another process reading
* the underlying blockdev brought it uptodate (the sct fix).
*/
for (i = 0; i < nr; i++) {
bh = arr[i];
if (buffer_uptodate(bh))
end_buffer_async_read(bh, 1);
else
/*将所有需要读取的缓冲区转交给块层
也就是BIO层,在其中开始读操作*/
submit_bh(READ, bh);
}
return 0;
}
将整页写入到缓冲区
除了读操作之外,页面的写操作也可以划分为更小的单位。只有页中实际修改的内容需要回写,而不用回写整页的内容。遗憾的是,从缓冲区的角度来看,写操作的实现比上述的读操作复杂的多。
__block_wirte_full_page函数中回写脏页面设计的缓冲区相关操作。
/*
* NOTE! All mapped/uptodate combinations are valid:
*
* Mapped UptodateMeaning
*
* No No "unknown" - must do get_block()
* No Yes "hole" - zero-filled
* Yes No "allocated" - allocated on disk, not read in
* Yes Yes "valid" - allocated and up-to-date in memory.
*
* "Dirty" is valid only with the last case (mapped+uptodate).
*/
/*
* While block_write_full_page is writing back the dirty buffers under
* the page lock, whoever dirtied the buffers may decide to clean them
* again at any time. We handle that by only looking at the buffer
* state inside lock_buffer().
*
* If block_write_full_page() is called for regular writeback
* (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
* locked buffer. This only can happen if someone has written the buffer
* directly, with submit_bh(). At the address_space level PageWriteback
* prevents this contention from occurring.
*
* If block_write_full_page() is called with wbc->sync_mode ==
* WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
* causes the writes to be flagged as synchronous writes, but the
* block device queue will NOT be unplugged, since usually many pages
* will be pushed to the out before the higher-level caller actually
* waits for the writes to be completed. The various wait functions,
* such as wait_on_writeback_range() will ultimately call sync_page()
* which will ultimately call blk_run_backing_dev(), which will end up
* unplugging the device queue.
*/
static int __block_write_full_page(struct inode *inode, struct page *page,
get_block_t *get_block, struct writeback_control *wbc,
bh_end_io_t *handler)
{
int err;
sector_t block;
sector_t last_block;
struct buffer_head *bh, *head;
const unsigned blocksize = 1 << inode->i_blkbits;
int nr_underway = 0;
int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
WRITE_SYNC_PLUG : WRITE);
BUG_ON(!PageLocked(page));
last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
/*页面是否有关联缓冲区,如果没有创建他*/
if (!page_has_buffers(page)) {
create_empty_buffers(page, blocksize,
(1 << BH_Dirty)|(1 << BH_Uptodate));
}
/*
* Be very careful. We have no exclusion from __set_page_dirty_buffers
* here, and the (potentially unmapped) buffers may become dirty at
* any time. If a buffer becomes dirty here after we've inspected it
* then we just miss that fact, and the page stays dirty.
*
* Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
* handle that here by just cleaning them.
*/
block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
head = page_buffers(page);
bh = head;
/*
* Get all the dirty buffers mapped to disk addresses and
* handle any aliases from the underlying blockdev's mapping.
*/
/*对所有未映射的脏缓冲区,在缓冲区和块设备
之间建立映射*/
do {
if (block > last_block) {
/*
* mapped buffers outside i_size will occur, because
* this page can be outside i_size when there is a
* truncate in progress.
*/
/*
* The buffer was zeroed by block_write_full_page()
*/
clear_buffer_dirty(bh);
set_buffer_uptodate(bh);
} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
buffer_dirty(bh)) {
WARN_ON(bh->b_size != blocksize);
/*查找块设备上与缓冲区项匹配的块*/
err = get_block(inode, block, bh, 1);
if (err)
goto recover;
clear_buffer_delay(bh);
if (buffer_new(bh)) {
/* blockdev mappings never come here */
clear_buffer_new(bh);
unmap_underlying_metadata(bh->b_bdev,
bh->b_blocknr);
}
}
bh = bh->b_this_page;
block++;
} while (bh != head);
/*第二遍遍历,将滤出所有的脏缓冲区*/
do {
if (!buffer_mapped(bh))
continue;
/*
* If it's a fully non-blocking write attempt and we cannot
* lock the buffer then redirty the page. Note that this can
* potentially cause a busy-wait loop from writeback threads
* and kswapd activity, but those code paths have their own
* higher-level throttling.
*/
if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
lock_buffer(bh);
} else if (!trylock_buffer(bh)) {
redirty_page_for_writepage(wbc, page);
continue;
}
/*如果设置了脏页标志,则会在调用该函数时清除
因为缓冲区的内容将立即回写*/
if (test_clear_buffer_dirty(bh)) {
/*设置BH_Async_Write状态位,并将end_buffer_async_write
指定为BIO完成处理程序即b_end_io*/
mark_buffer_async_write_endio(bh, handler);
} else {
unlock_buffer(bh);
}
} while ((bh = bh->b_this_page) != head);
/*
* The page and its buffers are protected by PageWriteback(), so we can
* drop the bh refcounts early.
*/
BUG_ON(PageWriteback(page));
set_page_writeback(page);
/*最后一次遍历*/
do {
struct buffer_head *next = bh->b_this_page;
if (buffer_async_write(bh)) {
/*将前一次遍历中标记为BH_Async_Write的所有缓冲区
转交给块层执行实际的写操作,该函数向块层提交
了对应的请求*/
submit_bh(write_op, bh);
nr_underway++;
}
bh = next;
} while (bh != head);
unlock_page(page);
err = 0;
done:
if (nr_underway == 0) {
/*
* The page was marked dirty, but the buffers were
* clean. Someone wrote them back by hand with
* ll_rw_block/submit_bh. A rare case.
*/
end_page_writeback(page);
/*
* The page and buffer_heads can be released at any time from
* here on.
*/
}
return err;
recover:
/*
* ENOSPC, or some other error. We may already have added some
* blocks to the file, so we need to write these out to avoid
* exposing stale data.
* The page is currently locked and not marked for writeback
*/
bh = head;
/* Recovery: lock and submit the mapped buffers */
do {
if (buffer_mapped(bh) && buffer_dirty(bh) &&
!buffer_delay(bh)) {
lock_buffer(bh);
mark_buffer_async_write_endio(bh, handler);
} else {
/*
* The buffer may have been set dirty during
* attachment to a dirty page.
*/
clear_buffer_dirty(bh);
}
} while ((bh = bh->b_this_page) != head);
SetPageError(page);
BUG_ON(PageWriteback(page));
mapping_set_error(page->mapping, err);
set_page_writeback(page);
do {
struct buffer_head *next = bh->b_this_page;
if (buffer_async_write(bh)) {
clear_buffer_dirty(bh);
submit_bh(write_op, bh);
nr_underway++;
}
bh = next;
} while (bh != head);
unlock_page(page);
goto done;
}