软件环境
Ubuntu 16.04 LTS
Hadoop: 2.6.5
Spark: 1.3.0
写在前面
本例中的演示均为非 root 权限,所以有些命令行需要加 sudo,如果你是 root 身份运行,请忽略 sudo。下载安装的软件建议都放在 home 目录之上,比如~/workspace中,这样比较方便,以免权限问题带来不必要的麻烦。
一、环境准备
修改主机名
搭建1个master,2个slave的集群方案。首先修改主机名vi /etc/hostname,在master上修改为master,其中一个slave上修改为slave1,另一个同理。
设置静态IP
在终端中输入:
vi /etc/sysconfig/network-scripts/ifcfg-eth0
开始编辑,填写ip地址、子网掩码、网关、DNS等。其中“红框内的信息”是必须得有的。
编辑完后,保存退出。重启网络服务
service network restart
或
/etc/init.d/network restart
ping网关,ping外网进行测试。都能ping通表示网络正常。
若没有设置成功,可以在桌面环境在右击网络属性进行设置。
配置hosts
在每台主机上修改host文件(如果有三列,最后一列是主机别名)
vi /etc/hosts
10.1.1.107 master
10.1.1.108 slave1
10.1.1.109 slave2
配置之后ping一下用户名看是否生效
ping slave1
ping slave2
SSH 免密码登录
安装Openssh server
sudo apt-get install openssh-server
在所有机器上都生成私钥和公钥
ssh-keygen -t rsa #一路回车
需要让机器间都能相互访问,就把每个机子上的id_rsa.pub发给master节点,传输公钥可以用scp来传输。
scp ~/.ssh/id_rsa.pub spark@master:~/.ssh/id_rsa.pub.slave1
在master上,将所有公钥加到用于认证的公钥文件authorized_keys中
cat ~/.ssh/id_rsa.pub* >> ~/.ssh/authorized_keys
将公钥文件authorized_keys分发给每台slave
scp ~/.ssh/authorized_keys spark@slave1:~/.ssh/
在每台机子上验证SSH无密码通信
ssh master
ssh slave1
ssh slave2
如果登陆测试不成功,则可能需要修改文件authorized_keys的权限(权限的设置非常重要,因为不安全的设置安全设置,会让你不能使用RSA功能 )
chmod 600 ~/.ssh/authorized_keys
安装 Java
从官网下载最新版 Java 就可以,Spark官方说明 Java 只要是6以上的版本都可以,我下的是 jdk-7u75-linux-x64.gz
在~/workspace目录下直接解压
tar -zxvf jdk-7u75-linux-x64.gz
修改环境变量sudo vi /etc/profile,添加下列内容,注意将home路径替换成你的:
export WORK_SPACE=/home/spark/workspace/
export JAVA_HOME=$WORK_SPACE/jdk1.7.0_75
export JRE_HOME=/home/spark/work/jdk1.7.0_75/jre
export PATH=$JAVA_HOME/bin:$JAVA_HOME/jre/bin:$PATH
export CLASSPATH=$CLASSPATH:.:$JAVA_HOME/lib:$JAVA_HOME/jre/lib
然后使环境变量生效,并验证 Java 是否安装成功
$ source /etc/profile #生效环境变量
$ java -version #如果打印出如下版本信息,则说明安装成功
java version "1.7.0_75"
Java(TM) SE Runtime Environment (build 1.7.0_75-b13)
Java HotSpot(TM) 64-Bit Server VM (build 24.75-b04, mixed mode)
安装 Scala
Spark官方要求 Scala 版本为 2.10.x,注意不要下错版本,我这里下了 2.10.4,官方下载地址(http://www.scala-lang.org/download/2.10.4.html)。
同样我们在~/workspace中解压
tar -zxvf scala-2.10.4.tgz
再次修改环境变量sudo vi /etc/profile,添加以下内容:
export SCALA_HOME=$WORK_SPACE/scala-2.10.4
export PATH=$PATH:$SCALA_HOME/bin
同样的方法使环境变量生效,并验证 scala 是否安装成功
$ source /etc/profile #生效环境变量
$ scala -version #如果打印出如下版本信息,则说明安装成功
Scala code runner version 2.10.4 -- Copyright 2002-2013, LAMP/EPFL
安装配置 Hadoop YARN
从这部分起,主要在master上操作,再把配置分发给slave,要保证所以机子的配置是一样的
下载解压
从官网(http://hadoop.apache.org/releases.html#Download)下载 hadoop2.6.0 版本
同样我们在~/workspace中解压
tar -zxvf hadoop-2.6.0.tar.gz
配置 Hadoop
注意路径要修改为自己的路径,cd ~/workspace/hadoop-2.6.0/etc/hadoop进入hadoop配置目录,需要配置有以下7个文件:hadoop-env.sh,yarn-env.sh,slaves,core-site.xml,hdfs-site.xml,maprd-site.xml,yarn-site.xml。若找不到对应的配置文件,查看是否有.template的模板文件,去掉其.template的后缀名。
1.在hadoop-env.sh中配置JAVA_HOME
# The java implementation to use.
export JAVA_HOME=/home/spark/workspace/jdk1.7.0_75
2.在yarn-env.sh中配置JAVA_HOME
# some Java parameters
export JAVA_HOME=/home/spark/workspace/jdk1.7.0_75
3.在slaves中配置slave节点的ip或者host(如果要将master也设为工作节点,则多加一个master)
slave1
slave2
4.修改core-site.xml
5.修改hdfs-site.xml
6.修改mapred-site.xml
7.修改yarn-site.xml
将配置好的hadoop-2.6.5文件夹分发给所有slaves吧
scp -r ~/workspace/hadoop-2.6.5 spark@slave1:~/workspace/
启动Hadoop
在 master 上执行以下操作,就可以启动 hadoop 了。
cd ~/workspace/hadoop-2.6.0 #进入hadoop目录
bin/hadoop namenode -format #格式化namenode
sbin/start-dfs.sh #启动dfs
sbin/start-yarn.sh #启动yarn
验证 Hadoop 是否安装成功
可以通过jps命令查看各个节点启动的进程是否正常。在 master 上应该有以下几个进程:
$ jps #run on master
3407 SecondaryNameNode
3218 NameNode
3552 ResourceManager
3910 Jps
在每个slave上应该有以下几个进程:
$ jps #run on slaves
2072 NodeManager
2213 Jps
1962 DataNode
或者在浏览器中输入 http://master:8088 ,应该有 hadoop 的管理界面出来了,并能看到 slave1 和 slave2 节点。
注意:
若出现DataNode没有启动的问题,检查hdfs-site.xml对应路径下的namenode和datanode的clusterId是否一致,若不一致则修改datanode里的VERSION文件的clusterId;
若namenode不启动,则重新格式化namenode,可以先删除master主节点下的data, name, namesecondary三个文件夹,删除mapred设置路径对应下的四个文件夹,以及删除所有logs文件,slave同理
二、Spark安装
下载解压
进入官方(http://spark.apache.org/downloads.html)下载地址下载最新版 Spark。我下载的是 spark-1.3.0-bin-hadoop2.4.tgz。
在~/workspace目录下解压
tar -zxvf spark-1.3.0-bin-hadoop2.4.tgz
mv spark-1.3.0-bin-hadoop2.4 spark-1.3.0#原来的文件名太长了,修改下
配置 Spark
cd ~/workspace/spark-1.3.0/conf#进入spark配置目录
cp spark-env.sh.template spark-env.sh #从配置模板复制
vi spark-env.sh#添加配置内容
在spark-env.sh末尾添加以下内容(这是我的配置,你可以自行修改):
export SCALA_HOME=/home/spark/workspace/scala-2.10.4
export JAVA_HOME=/home/spark/workspace/jdk1.7.0_75
export HADOOP_HOME=/home/spark/workspace/hadoop-2.6.5
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
SPARK_MASTER_IP=master
SPARK_LOCAL_DIRS=/home/spark/workspace/spark-1.3.0
SPARK_DRIVER_MEMORY=1G
注:在设置Worker进程的CPU个数和内存大小,要注意机器的实际硬件条件,如果配置的超过当前Worker节点的硬件条件,Worker进程会启动失败。
vi slaves在slaves文件下填上slave主机名(同理,master也可以加上):
slave1
slave2
将配置好的spark-1.3.0文件夹分发给所有slaves吧
启动Spark
sbin/start-all.sh
验证 Spark 是否安装成功
用jps检查,在 master 上应该有以下几个进程:
$ jps
7949 Jps
7328 SecondaryNameNode
7805 Master
7137 NameNode
7475 ResourceManager
在 slave 上应该有以下几个进程:
$jps
3132 DataNode
3759 Worker
3858 Jps
3231 NodeManager
进入Spark的Web管理页面: http://master:8080
(注意有个safe-mode模式,可能需要关闭,需要另外查)
运行示例
#本地模式两线程运行
./bin/run-example SparkPi 10 --master local[2]
#Spark Standalone 集群模式运行
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://master:7077 \
lib/spark-examples-1.3.0-hadoop2.4.0.jar \
100
#Spark on YARN 集群上 yarn-cluster 模式运行
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn-cluster \ # can also be `yarn-client`
lib/spark-examples*.jar \
10
注意 Spark on YARN 支持两种运行模式,分别为yarn-cluster和yarn-client,从广义上讲,yarn-cluster适用于生产环境;而yarn-client适用于交互和调试,也就是希望快速地看到application的输出。