红联Linux门户
Linux帮助

在ubuntu16.04上使用Eclipse调试基于caffe的测试代码

发布时间:2016-10-12 09:55:31来源:linux网站作者:王强_CASIA
本文档并不是调试caffe本身,而是调试基于caffe的测试代码。
 
准备环节
你需要按照官方说明(http://caffe.berkeleyvision.org/install_apt.html)安装好caffe,除了官网的说明,你还可以参考官方github上ubuntu16.04 Installation Guide(https://github.com/BVLC/caffe/wiki/Ubuntu-16.04-or-15.10-Installation-Guide),但是切记不要安装Python的封装。
具体过程如下(我假定你安装过多次,该有的包都有了):
git clone https://github.com/BVLC/caffe.git
cd caffe
cp Makefile.config.example Makefile.config
vim Makefile.config
配置成CPU_ONLY模式,然后如下编译(这个distribute很特殊,一般正常编译不需要,原作者没有强调。所以导致我在caffe/distribute中一直没有找到include文件):
make all -j12
make distribute
编译完成之后,我们进入如何编译caffe/examples/cpp_classification环节。当然,你要是之前看过这段代码的话,你肯定知道里面用到OpenCV,怎么在eclipse中使用opencv,参考opencv官方说明,建议先单独建立一个工程来熟悉在eclipse中使用opencv。
 
新建工程
 
打开Eclipse,然后新建一个c++ project。
File ->New ->C++ project
选择一个空的Linux GCC工程并起个名字。
在ubuntu16.04上使用Eclipse调试基于caffe的测试代码
在工程中先添加源文件,
File ->New ->Source File
在ubuntu16.04上使用Eclipse调试基于caffe的测试代码
在里面添加上cpp_classification.cpp的内容
#include <caffe/caffe.hpp>
#ifdef USE_OPENCV
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#endif  // USE_OPENCV
#include <algorithm>
#include <iosfwd>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#ifdef USE_OPENCV
using namespace caffe;  // NOLINT(build/namespaces)
using std::string;
/* Pair (label, confidence) representing a prediction. */
typedef std::pair<string, float> Prediction;
class Classifier {
 public:
  Classifier(const string& model_file,
             const string& trained_file,
             const string& mean_file,
             const string& label_file);
  std::vector<Prediction> Classify(const cv::Mat& img, int N = 5);
 private:
  void SetMean(const string& mean_file);
  std::vector<float> Predict(const cv::Mat& img);
  void WrapInputLayer(std::vector<cv::Mat>* input_channels);
  void Preprocess(const cv::Mat& img,
                  std::vector<cv::Mat>* input_channels);
 private:
  shared_ptr<Net<float> > net_;
  cv::Size input_geometry_;
  int num_channels_;
  cv::Mat mean_;
  std::vector<string> labels_;
};
Classifier::Classifier(const string& model_file,
                       const string& trained_file,
                       const string& mean_file,
                       const string& label_file) {
#ifdef CPU_ONLY
  Caffe::set_mode(Caffe::CPU);
#else
  Caffe::set_mode(Caffe::GPU);
#endif
  /* Load the network. */
  net_.reset(new Net<float>(model_file, TEST));
  net_->CopyTrainedLayersFrom(trained_file);
  CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
  CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";
  Blob<float>* input_layer = net_->input_blobs()[0];
  num_channels_ = input_layer->channels();
  CHECK(num_channels_ == 3 || num_channels_ == 1)
    << "Input layer should have 1 or 3 channels.";
  input_geometry_ = cv::Size(input_layer->width(), input_layer->height());
  /* Load the binaryproto mean file. */
  SetMean(mean_file);
  /* Load labels. */
  std::ifstream labels(label_file.c_str());
  CHECK(labels) << "Unable to open labels file " << label_file;
  string line;
  while (std::getline(labels, line))
    labels_.push_back(string(line));
  Blob<float>* output_layer = net_->output_blobs()[0];
  CHECK_EQ(labels_.size(), output_layer->channels())
    << "Number of labels is different from the output layer dimension.";
}
static bool PairCompare(const std::pair<float, int>& lhs,
                        const std::pair<float, int>& rhs) {
  return lhs.first > rhs.first;
}
/* Return the indices of the top N values of vector v. */
static std::vector<int> Argmax(const std::vector<float>& v, int N) {
  std::vector<std::pair<float, int> > pairs;
  for (size_t i = 0; i < v.size(); ++i)
    pairs.push_back(std::make_pair(v[i], i));
  std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);
  std::vector<int> result;
  for (int i = 0; i < N; ++i)
    result.push_back(pairs[i].second);
  return result;
}
/* Return the top N predictions. */
std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) {
  std::vector<float> output = Predict(img);
  N = std::min<int>(labels_.size(), N);
  std::vector<int> maxN = Argmax(output, N);
  std::vector<Prediction> predictions;
  for (int i = 0; i < N; ++i) {
    int idx = maxN[i];
    predictions.push_back(std::make_pair(labels_[idx], output[idx]));
  }
  return predictions;
}
/* Load the mean file in binaryproto format. */
void Classifier::SetMean(const string& mean_file) {
  BlobProto blob_proto;
  ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);
  /* Convert from BlobProto to Blob<float> */
  Blob<float> mean_blob;
  mean_blob.FromProto(blob_proto);
  CHECK_EQ(mean_blob.channels(), num_channels_)
    << "Number of channels of mean file doesn't match input layer.";
  /* The format of the mean file is planar 32-bit float BGR or grayscale. */
  std::vector<cv::Mat> channels;
  float* data = mean_blob.mutable_cpu_data();
  for (int i = 0; i < num_channels_; ++i) {
    /* Extract an individual channel. */
    cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
    channels.push_back(channel);
    data += mean_blob.height() * mean_blob.width();
  }
  /* Merge the separate channels into a single image. */
  cv::Mat mean;
  cv::merge(channels, mean);
  /* Compute the global mean pixel value and create a mean image
   * filled with this value. */
  cv::Scalar channel_mean = cv::mean(mean);
  mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}
std::vector<float> Classifier::Predict(const cv::Mat& img) {
  Blob<float>* input_layer = net_->input_blobs()[0];
  input_layer->Reshape(1, num_channels_,
                       input_geometry_.height, input_geometry_.width);
  /* Forward dimension change to all layers. */
  net_->Reshape();
  std::vector<cv::Mat> input_channels;
  WrapInputLayer(&input_channels);
  Preprocess(img, &input_channels);
  net_->Forward();
  /* Copy the output layer to a std::vector */
  Blob<float>* output_layer = net_->output_blobs()[0];
  const float* begin = output_layer->cpu_data();
  const float* end = begin + output_layer->channels();
  return std::vector<float>(begin, end);
}
/* Wrap the input layer of the network in separate cv::Mat objects
 * (one per channel). This way we save one memcpy operation and we
 * don't need to rely on cudaMemcpy2D. The last preprocessing
 * operation will write the separate channels directly to the input
 * layer. */
void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
  Blob<float>* input_layer = net_->input_blobs()[0];
  int width = input_layer->width();
  int height = input_layer->height();
  float* input_data = input_layer->mutable_cpu_data();
  for (int i = 0; i < input_layer->channels(); ++i) {
    cv::Mat channel(height, width, CV_32FC1, input_data);
    input_channels->push_back(channel);
    input_data += width * height;
  }
}
void Classifier::Preprocess(const cv::Mat& img,
                            std::vector<cv::Mat>* input_channels) {
  /* Convert the input image to the input image format of the network. */
  cv::Mat sample;
  if (img.channels() == 3 && num_channels_ == 1)
    cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
  else if (img.channels() == 4 && num_channels_ == 1)
    cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
  else if (img.channels() == 4 && num_channels_ == 3)
    cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
  else if (img.channels() == 1 && num_channels_ == 3)
    cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
  else
    sample = img;
  cv::Mat sample_resized;
  if (sample.size() != input_geometry_)
    cv::resize(sample, sample_resized, input_geometry_);
  else
    sample_resized = sample;
  cv::Mat sample_float;
  if (num_channels_ == 3)
    sample_resized.convertTo(sample_float, CV_32FC3);
  else
    sample_resized.convertTo(sample_float, CV_32FC1);
  cv::Mat sample_normalized;
  cv::subtract(sample_float, mean_, sample_normalized);
  /* This operation will write the separate BGR planes directly to the
   * input layer of the network because it is wrapped by the cv::Mat
   * objects in input_channels. */
  cv::split(sample_normalized, *input_channels);
  CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
        == net_->input_blobs()[0]->cpu_data())
    << "Input channels are not wrapping the input layer of the network.";
}
int main(int argc, char** argv) {
  if (argc != 6) {
    std::cerr << "Usage: " << argv[0]
              << " deploy.prototxt network.caffemodel"
              << " mean.binaryproto labels.txt img.jpg" << std::endl;
    return 1;
  }
  ::google::InitGoogleLogging(argv[0]);
  string model_file   = argv[1];
  string trained_file = argv[2];
  string mean_file    = argv[3];
  string label_file   = argv[4];
  Classifier classifier(model_file, trained_file, mean_file, label_file);
  string file = argv[5];
  std::cout << "---------- Prediction for "
            << file << " ----------" << std::endl;
  cv::Mat img = cv::imread(file, -1);
  CHECK(!img.empty()) << "Unable to decode image " << file;
  std::vector<Prediction> predictions = classifier.Classify(img);
  /* Print the top N predictions. */
  for (size_t i = 0; i < predictions.size(); ++i) {
    Prediction p = predictions[i];
    std::cout << std::fixed << std::setprecision(4) << p.second << " - \""
              << p.first << "\"" << std::endl;
  }
}
#else
int main(int argc, char** argv) {
  LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";
}
#endif  // USE_OPENCV
 
下面进入引用caffe配置环节
 
include
Project -> Properties ->C/C++ Build -> Settings ->GCC C++ Compiler -> Includes - >Include paths(-I)
里面添加
/to/your/caffe/include
/to/your/caffe/distribute/include
在ubuntu16.04上使用Eclipse调试基于caffe的测试代码
 
Linker
在 Project -> Properties ->C/C++ Build -> Settings ->GCC C++ Linker -> Libraries - >Include paths(-I)
里面添加
/to/your/caffe/build/lib
在 Project -> Properties ->C/C++ Build -> Settings ->GCC C++ Linker -> Libraries - >Libraries(-l)
里面添加
caffe
在ubuntu16.04上使用Eclipse调试基于caffe的测试代码
在Project -> Properties ->C/C++ Build -> Settings ->GCC C++ Linker -> Miscellaneous - >Other objects
里面添加
/to/your/caffe/.build_release/lib/libcaffe.so
在ubuntu16.04上使用Eclipse调试基于caffe的测试代码
然后注意本次设置的是CPU_ONLY模式,
在Project -> Properties ->C/C++ Build -> Settings ->GCC C++ Compiler -> Preprocessor - >Define symbols(-D)
里面添加
CPU_ONLY=1
在ubuntu16.04上使用Eclipse调试基于caffe的测试代码
 
到这里caffe的配置已经全部完成了。还剩opencv的部分没有添加。
 
本文永久更新地址:http://www.linuxdiyf.com/linux/24948.html