红联Linux门户
Linux帮助

Ubuntu下glpk的安装及使用

发布时间:2015-09-17 16:05:26来源:cnblogs.com/jostree/作者:jostree

glpk是一个开源的求解线性规划的包。

添加源:

deb http://us.archive.ubuntu.com/ubuntu saucy main universe

更新源并安装:

sudo apt-get update

sudo apt-get install glpk


写入如下glpsolEx.mod 文件

1 /* Variables */
2 var x1 >= 0;
3 var x2 >= 0;
4 var x3 >= 0;
5
6 /* Object function */
7 maximize z: x1 + 14*x2 + 6*x3;
8
9 /* Constrains */
10 s.t. con1: x1 + x2 + x3 <= 4;
11 s.t. con2: x1  <= 2;
12 s.t. con3: x3  <= 3;
13 s.t. con4: 3*x2 + x3  <= 6;
14
15 end;


运行 glpsol -m glpsolEx.mod -o glpsolEx.sol,输出到glpsolEx.sol文件中

结果为:

1 Problem:    glpsolEx
2 Rows:       5
3 Columns:    3
4 Non-zeros:  10
5 Status:     OPTIMAL
6 Objective:  z = 32 (MAXimum)
7
8    No.   Row name   St   Activity     Lower bound   Upper bound    Marginal
9 ------ ------------ -- ------------- ------------- ------------- -------------
10      1 z            B             32                            
11      2 con1         NU             4                           4             2
12      3 con2         B              0                           2
13      4 con3         B              3                           3
14      5 con4         NU             6                           6             4
15
16    No. Column name  St   Activity     Lower bound   Upper bound    Marginal
17 ------ ------------ -- ------------- ------------- ------------- -------------
18      1 x1           NL             0             0                          -1
19      2 x2           B              1             0              
20      3 x3           B              3             0              
21
22 Karush-Kuhn-Tucker optimality conditions:
23
24 KKT.PE: max.abs.err = 0.00e+00 on row 0
25         max.rel.err = 0.00e+00 on row 0
26         High quality
27
28 KKT.PB: max.abs.err = 4.44e-16 on row 4
29         max.rel.err = 1.11e-16 on row 4
30         High quality
31
32 KKT.DE: max.abs.err = 0.00e+00 on column 0
33         max.rel.err = 0.00e+00 on column 0
34         High quality
35
36 KKT.DB: max.abs.err = 0.00e+00 on row 0
37         max.rel.err = 0.00e+00 on row 0
38         High quality
39
40 End of output


帮助文档中一个求解八皇后的例子:

1 /* QUEENS, a classic combinatorial optimization problem */
2
3 /* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
4
5 /* The Queens Problem is to place as many queens as possible on the 8x8
6    (or more generally, nxn) chess board in a way that they do not fight
7    each other. This problem is probably as old as the chess game itself,
8    and thus its origin is not known, but it is known that Gauss studied
9    this problem. */
10
11 param n, integer, > 0, default 8;
12 /* size of the chess board */
13
14 var x{1..n, 1..n}, binary;
15 /* x[i,j] = 1 means that a queen is placed in square [i,j] */
16
17 s.t. a{i in 1..n}: sum{j in 1..n} x[i,j] <= 1;
18 /* at most one queen can be placed in each row */
19
20 s.t. b{j in 1..n}: sum{i in 1..n} x[i,j] <= 1;
21 /* at most one queen can be placed in each column */
22
23 s.t. c{k in 2-n..n-2}: sum{i in 1..n, j in 1..n: i-j == k} x[i,j] <= 1;
24 /* at most one queen can be placed in each "\"-diagonal */
25
26 s.t. d{k in 3..n+n-1}: sum{i in 1..n, j in 1..n: i+j == k} x[i,j] <= 1;
27 /* at most one queen can be placed in each "/"-diagonal */
28
29 maximize obj: sum{i in 1..n, j in 1..n} x[i,j];
30 /* objective is to place as many queens as possible */
31
32 /* solve the problem */
33 solve;
34
35 /* and print its optimal solution */
36 for {i in 1..n}
37 {  for {j in 1..n} printf " %s", if x[i,j] then "Q" else ".";
38    printf("\n");
39 }
40
41 end;