在我的机器上出现的提示信息如下所示:
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
那么需要说明的是:这些是warnings,不是error。这些warings的意思是说:你的机器上有这些指令集可以用,并且用了他们会加快你的CPU运行速度,但是你的TensorFlow在编译的时候并没有用到这些指令集。
我的tensorflow在安装的时候采用的pip install指令,这种安装方式会存在这种问题。主要有两种解决方法,一种是修改警告信息的显示级别,使这种信息不再出现,另外一种就是自己重新编译安装tensorflow,在编译的时候使用这些指令集。这里我尝试第二种解决方法。并且由于我的机器上没有高效的GPU,所以我尝试安装的是CPU版本。
首先,卸载已经安装的tensorflow:
sudo pip uninstall tensorflow
然后,克隆Tensorflow仓库:
git clone --recurse-submodules https://github.com/tensorflow/tensorflow
上面的命令会在你的当前文件夹中创建一个叫做“tensorflow”的文件夹,下载的文件都存在里面。
由于编译安装tensorflow的时候要用到Bazel工具,所以接下来我们安装Bazel。按照官网指导(https://bazel.build/versions/master/docs/install-ubuntu.html)输入以下命令:
echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list
curl https://bazel.build/bazel-release.pub.gpg | sudo apt-key add -
sudo apt-get update && sudo apt-get install bazel
sudo apt-get upgrade bazel
然后安装tensorflow所需要的其他依赖
sudo apt-get install python-numpy python-dev python-pip python-wheel
然后进入tensorflow文件夹,运行tensorflow的配置程序:
cd tensorflow/
./configure
对我来说,在配置过程中出现如下错误:
Problem with java installation: couldn't find/access rt.jar in /usr/lib/jvm/java-9-openjdk-amd64
我没有仔细研究原因,但是我用如下命令把java-9卸载之后就没有问题了。
sudo apt-get purge openjdk-9*
然后用如下命令来生成一个pip的安装包:
bazel build -c opt --copt=-msse3 --copt=-msse4.1 --copt=-msse4.2 --copt=-mavx --copt=-mavx2 --copt=-mfma //tensorflow/tools/pip_package:build_pip_package
这是一个相当耗时的过程。
上述命令会生成一个叫做build_pip_package的脚本,按照如下命令运行这个脚本,在/tmp/tensorflow_pkg文件夹中创建pip的安装包:
bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg
然后运行下面的命令来安装。需要说明的是,由于平台的不同,可能软件包的名字是不一样的。
sudo pip install /tmp/tensorflow_pkg/tensorflow-1.1.0rc1-cp27-cp27mu-linux_x86_64.whl
安装成功,意味着大功告成。